132 research outputs found

    Clonal Sectors Reveal That a Specific Meristematic Domain Is Not Utilized in the Maize Mutantnarrow sheath

    Get PDF
    AbstractThe narrow leaf and shortened stem phenotypes of the maize mutant narrow sheath (ns) are postulated to result from the lack of founder cell initialization in a region of the meristem that gives rise to leaf and stem margins. To test this model, a lineage map of the maize meristem is presented which compares the development of leaf margins in the narrow leaf mutant, narrow sheath (ns), and wild-type sibling plants. X-irradiation of mature seeds produced aneuploid albino sectors in wild-type and ns mutant plants. Of particular interest are sectors occurring in more than one leaf, which reflect a meristematic albino cell lineage. Analyses of these sectors indicated that: (1) a region of the ns meristem does not contribute to the founder cell population of the incipient leaf; (2) the margins of ns mutant leaves are derived from a lateral region of the meristem different from those in wild-type siblings; (3) founder cells in wild-type, juvenile-staged vegetative meristems encircle the meristem to a greater extent than do founder cells in adult-staged meristems; and (4) meristematic leaf founder cells may be subdivided into specific lateral domains, such that the position of a sector on the meristem correlates with a particular cell lineage. These data support our model fornsgene function in a specific domain of the meristem

    The fate of Arabidopsis thaliana homeologous CNSs and their motifs in the Paleohexaploid Brassica rapa.

    Get PDF
    Following polyploidy, duplicate genes are often deleted, and if they are not, then duplicate regulatory regions are sometimes lost. By what mechanism is this loss and what is the chance that such a loss removes function? To explore these questions, we followed individual Arabidopsis thaliana-A. thaliana conserved noncoding sequences (CNSs) into the Brassica ancestor, through a paleohexaploidy and into Brassica rapa. Thus, a single Brassicaceae CNS has six potential orthologous positions in B. rapa; a single Arabidopsis CNS has three potential homeologous positions. We reasoned that a CNS, if present on a singlet Brassica gene, would be unlikely to lose function compared with a more redundant CNS, and this is the case. Redundant CNSs go nondetectable often. Using this logic, each mechanism of CNS loss was assigned a metric of functionality. By definition, proved deletions do not function as sequence. Our results indicated that CNSs that go nondetectable by base substitution or large insertion are almost certainly still functional (redundancy does not matter much to their detectability frequency), whereas those lost by inferred deletion or indels are approximately 75% likely to be nonfunctional. Overall, an average nondetectable, once-redundant CNS more than 30 bp in length has a 72% chance of being nonfunctional, and that makes sense because 97% of them sort to a molecular mechanism with deletion in its description, but base substitutions do cause loss. Similarly, proved-functional G-boxes go undetectable by deletion 82% of the time. Fractionation mutagenesis is a procedure that uses polyploidy as a mutagenic agent to genetically alter RNA expression profiles, and then to construct testable hypotheses as to the function of the lost regulatory site. We show fractionation mutagenesis to be a deletion machine in the Brassica lineage

    Genes Identified by Visible Mutant Phenotypes Show Increased Bias toward One of Two Subgenomes of Maize

    Get PDF
    Not all genes are created equal. Despite being supported by sequence conservation and expression data, knockout homozygotes of many genes show no visible effects, at least under laboratory conditions. We have identified a set of maize (Zea mays L.) genes which have been the subject of a disproportionate share of publications recorded at MaizeGDB. We manually anchored these “classical” maize genes to gene models in the B73 reference genome, and identified syntenic orthologs in other grass genomes. In addition to proofing the most recent version 2 maize gene models, we show that a subset of these genes, those that were identified by morphological phenotype prior to cloning, are retained at syntenic locations throughout the grasses at much higher levels than the average expressed maize gene, and are preferentially found on the maize1 subgenome even with a duplicate copy is still retained on the opposite subgenome. Maize1 is the subgenome that experienced less gene loss following the whole genome duplication in maize lineage 5–12 million years ago and genes located on this subgenome tend to be expressed at higher levels in modern maize. Links to the web based software that supported our syntenic analyses in the grasses should empower further research and support teaching involving the history of maize genetic research. Our findings exemplify the concept of “grasses as a single genetic system,” where what is learned in one grass may be applied to another

    Dose–Sensitivity, Conserved Non-Coding Sequences, and Duplicate Gene Retention through Multiple Tetraploidies in the Grasses

    Get PDF
    Whole genome duplications, or tetraploidies, are an important source of increased gene content. Following whole genome duplication, duplicate copies of many genes are lost from the genome. This loss of genes is biased both in the classes of genes deleted and the subgenome from which they are lost. Many or all classes are genes preferentially retained as duplicate copies are engaged in dose sensitive protein–protein interactions, such that deletion of any one duplicate upsets the status quo of subunit concentrations, and presumably lowers fitness as a result. Transcription factors are also preferentially retained following every whole genome duplications studied. This has been explained as a consequence of protein–protein interactions, just as for other highly retained classes of genes. We show that the quantity of conserved noncoding sequences (CNSs) associated with genes predicts the likelihood of their retention as duplicate pairs following whole genome duplication. As many CNSs likely represent binding sites for transcriptional regulators, we propose that the likelihood of gene retention following tetraploidy may also be influenced by dose–sensitive protein–DNA interactions between the regulatory regions of CNS-rich genes – nicknamed bigfoot genes – and the proteins that bind to them. Using grass genomes, we show that differential loss of CNSs from one member of a pair following the pre-grass tetraploidy reduces its chance of retention in the subsequent maize lineage tetraploidy

    Escape from Preferential Retention Following Repeated Whole Genome Duplications in Plants

    Get PDF
    The well supported gene dosage hypothesis predicts that genes encoding proteins engaged in dose–sensitive interactions cannot be reduced back to single copies once all interacting partners are simultaneously duplicated in a whole genome duplication. The genomes of extant flowering plants are the result of many sequential rounds of whole genome duplication, yet the fraction of genomes devoted to encoding complex molecular machines does not increase as fast as expected through multiple rounds of whole genome duplications. Using parallel interspecies genomic comparisons in the grasses and crucifers, we demonstrate that genes retained as duplicates following a whole genome duplication have only a 50% chance of being retained as duplicates in a second whole genome duplication. Genes which fractionated to a single copy following a second whole genome duplication tend to be the member of a gene pair with less complex promoters, lower levels of expression, and to be under lower levels of purifying selection. We suggest the copy with lower levels of expression and less purifying selection contributes less to effective gene-product dosage and therefore is under less dosage constraint in future whole genome duplications, providing an explanation for why flowering plant genomes are not overrun with subunits of large dose–sensitive protein complexes

    Automated Conserved Non-Coding Sequence (CNS) Discovery Reveals Differences in Gene Content and Promoter Evolution among Grasses

    Get PDF
    Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by \u3e12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize

    qTeller: a tool for comparative multi-genomic gene expression analysis

    Get PDF
    Motivation: Over the last decade, RNA-Seq whole-genome sequencing has become a widely used method for measuring and understanding transcriptome-level changes in gene expression. Since RNA-Seq is relatively inexpensive, it can be used on multiple genomes to evaluate gene expression across many different conditions, tissues and cell types. Although many tools exist to map and compare RNA-Seq at the genomics level, few web-based tools are dedicated to making data generated for individual genomic analysis accessible and reusable at a gene-level scale for comparative analysis between genes, across different genomes and meta-analyses. Results: To address this challenge, we revamped the comparative gene expression tool qTeller to take advantage of the growing number of public RNA-Seq datasets. qTeller allows users to evaluate gene expression data in a defined genomic interval and also perform two-gene comparisons across multiple user-chosen tissues. Though previously unpublished, qTeller has been cited extensively in the scientific literature, demonstrating its importance to researchers. Our new version of qTeller now supports multiple genomes for intergenomic comparisons, and includes capabilities for both mRNA and protein abundance datasets. Other new features include support for additional data formats, modernized interface and back-end database and an optimized framework for adoption by other organisms’ databases. Availability and implementation: The source code for qTeller is open-source and available through GitHub (https:// github.com/Maize-Genetics-and-Genomics-Database/qTeller). A maize instance of qTeller is available at the Maize Genetics and Genomics database (MaizeGDB) (https://qteller.maizegdb.org/), where we have mapped over 200 unique datasets from GenBank across 27 maize genomes

    Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Get PDF
    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community
    corecore